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Unigueness of the Solution of Electromagnetic
Boundary-Value Problems in the Presence of
Lossy and Piecewise Homogeneous

Lossless Dielectrics

Salvatore Caorsi and Mirco Raffetto

Abstract—In this paper, the uniqueness of the solution of homogeneous tangential components of the electric field over
electromagnetic boundary-value problems is investigated and, in the boundary (or homogeneous tangential components of the
some cases, proven. The boundary-value problems consideredy,aqnetic field over the boundary, or homogeneous tangential
are always defined in limited regions containing linear dielectric L
materials that are neither lossy nor lossless everywhere. The components of the elef:trlc field over part of the bourldgry, and
boundary conditions are given by specifying over the closed homogeneous tangential components of the magnetic field over
boundaries either the tangential components of the electric field the rest of the boundary), admits nontrivial modal solutions.
or the tangential components of the magnetic field (or possibly by For this reason, the electromagnetic boundary-value problem
specifying the tangential components of the electric field over part with inhomogeneous boundary conditions can admit an infinite
of the boundaries and the tangential components of the magnetic . . . L .
field over the rest of the boundaries). In particular, the solution is number of solutions, i.e., in general, the solution is not unlque_.
proven to be unique in the case of linear dielectric materials which ~ However, between these two classes of electromagnetic
are piecewise homogeneous and lossless, except for some linedsoundary-value problems, there is a “wide” class of problems
and lossy subregions that may be inhomogeneous. As a byproductcharacterized by linear dielectric materials neither lossy nor
of this analysis, one can conclude that a cavity resonator, loaded lossless everywhere. This is the case, for example, of dielec-
with linear and lossy dielectrics together with linear piecewise . e ’ . ’
homogeneous and lossless dielectric materials, does not admitfic@lly Ioaded cavity resonators or waveguides, when a lossy
undumped resonances. linear dielectric fills only part of the investigation domain,
the rest being empty and, consequently, linear and lossless.
Moreover, this kind of problems can be important even though
the modeled physical phenomenon is quite different from a

|. INTRODUCTION boundary-value problem. For example, scattering simulators

LECTROMAGNETIC boundary-value problems arePased on the so-called hybrid tephniques [2], [3] often require
Echaracterized by unique time-harmonic solutions Whéhe_ solutlons_of elect_romagnetm boundary-value _proble_ms,
the tangential components of the electric field are specifidéich are defined on linear, but only partly lossy, dielectrics.
over the closed boundary of a limited region if the dielectrién€ uniqueness of the solution of the involved boundary-value
material contained in that region is linear and lossy everywhepEoblems is of particular importance in order to be sure that
[1]. Boundary conditions can also be specified in terms Hpe method is able to solve the scattering problem correctly
the tangential components of the magnetic field over tiél—[6]-
boundary or even in terms of the tangential components ofA first attempt to fill the gap between problems character-
the electric field over part of the boundary and in terms ¢&€d by linear and everywhere lossy dielectrics and problems
the tangential components of the magnetic field over the r&faracterized by linear and everywhere lossless dielectric ma-
of the boundary. However, the condition on the dissipati€rials was made in [7]. In [7], the uniqueness of the solution
behavior of the dielectric material cannot be weakened if WS proven by using the hypothesis that the lossless part of
want to retain the validity of the proof given in [1], as thighe dielectric was homogeneous. Now, by using a much more
proof of the uniqueness of the solution is based on the enefftailed mathematical analysis, we try to generalize that result
conservation law, i.e., Poynting’s theorem. by allowing the lossless part of the dielectric to present jump

On the contrary, if the limited region is characterized by discontinuities. In particular, we will prove that the tangential
dielectric material which is linear and lossless everywhere,G@mponents of the electric field over the boundary (or the

is well known that the cavity problem, defined by specifyinggngential components of the magnetic field over the boundary,
or the former components over part of the boundary, and the
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/ 3 ™~ such thatE and H are tangentially continuous and
. e(r)E(r) and u(r)H(r) are normally continuous across
internal interfaces.

In the previous problemy denotes the angular frequency
Q, andn is the unit vector normal t& (where it has a meaning)
and pointing outward from the regiof.

It is well known that the electromagnetic boundary-value
problem (3) admits a unique solution if and only if the cor-
-3 responding homogeneous problem does not admit nontrivial
Q, Q, solutions.

\ Y. For this reason, in the following, our main objective will
be to prove that the associated cavity problem does not admit

Fig. 1. The boundary-value problem considered involves linear, homoge&esonant modes at > 0. The mathematical formulation of
neous, and lossless materialstip, i = 1, - - -, m, and linear, but lossy and

possibly inhomogeneous dielectrics i, ;, ¢ = 1,---, n. the associated Eigenvalue pmblem is
find w > 0, and nontrivialE and H, defined in every
A byproduct of this analysis is that a cavity resonator, loaded open region?;, : = 1, ---, m, andQ,;, i = 1, ---, n

with linear and lossy dielectrics together with linear piecewise (and regular enough to give a meaning to the following
homogeneous and lossless dielectric materials, does not admitquations), satisfying
undumped resonances. V x E(r) = —jwu(r)H(r), inNQ,i=1,---,m
or{l, ,i=1---,n
Il. THE ELECTROMAGNETIC BOUNDARY- VxH(r) =jwe(r)E(r), inQ,i=1--,m

VALUE PROBLEM CONSIDERED orflg, e =1,--+,n
. . ) nx E=0, ons
Fig. 1 shows the typical boundary-value problem considered (4)

@n_this paper. Lef2 be the region of interest. We suppose that such thatE and H are tangentially continuous and

it is an open, connected, and bounded sefih Moreover, e(r)E(r) and u(r)H(r) are normally continuous across

let ; C 2,4 = 1,---, m be open regions characterized internal interfaces.

by linear, lossless, and homogeneous dielegtric materials, ang g important to note that the boundary conditions in (3)
Q C @i =1,---,n be the open regions where theynq (4) could also be given in terms of tangential components
dielectric materials are linear and lossy. This means that ihe magnetic field § x H specified onS) or in terms
the dielectric permittivity and magnetic permeability can bgs tangential components of the electric field on part of the

expressed as follows: boundary and tangential components of the magnetic field over

. the rest of the boundaryn(x E specified on a part and
e(r) = { s, refli=Le,mo n x H specified over the rest of).
EUiR(r)_jEUiI(r)7 reriv IL:L e, T
() lll. SOME USEFUL PROPERTIES OF
i reQ,i=1---,m ELECTROMAGNETIC FIELDS
wlr) {NviR(r) — Jheir(r), reQy,i=1-,n In this section, we collect some important properties of elec-

(2) tromagnetic fields, which will be used later to prove our main
result on the uniqueness of the solution of the boundary-value

wheree; > 0,4=1, ---,m, p; >0,i=1,---,m, €5r(r), problem considered. In particular, by using standard arguments
toir(r), andeq;r(r) or u,ir(r) are real scalar fields strictly [1] and [8] (i.e., the energy conservation law), Lemma 1 proves
positive in§2,;, i = 1, -- -, n. Finally, let us suppose that thethat the solutions of the cavity problem (4) are trivial(¥;,
boundariesS of 2, S; of ;, i = 1, -, m, and S,; of Q,;, i=1,---,n (|e,E =H=0inQ,;,i= 1,---,n; see also
i =1,---, n, are piecewise regular surfaces. [7] for an analogous, albeit less general, conclusion), Lemma 2
The boundary-value problem is mathematically formulategtidresses the question of the analyticity of the electromagnetic
as follows: fieldinQ; c ©,i=1, ---, m, and Lemma 3 addresses the
givenw > 0 and G find E and H, defined in every  problem of the differentiability of the electromagnetic field on
open regiont);, i = 1, ---, m,andQ,;, i =1, ---, n the boundary of an open region when this boundary is shared
(and regular enough to give a meaning to the following with a region characterized b = H = 0. The proofs of
equations), satisfying Lemmas 1 and 3 will be reported in the Appendix. Lemma 2
_ is proven in [9, p. 134] and [10, pp. 585, 641].
V x E(r) = —jop(r)H(r), In€Y, i=1,---,m Lemma 1: Any solution E, H of the cavity problem (4),
. SO, i=1,n  gych that
VX H) = jueeBe, =1, 0, m Ec[C'O)F He[C'OP, ©=Q,i=1 - m

IIXEIG, ons Or®:Qoi,;,i:1,---,n (5)
(3) satisfiesE =H =01in Q,;, ¢ =1, ---, n.
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Lemma 2: In an open regior®, characterized by constant e
and possibly complex dielectric parameters, any twice con-
tinuously differentiable time-harmonic electromagnetic field,
ie.,

Ec[C*(0) He[C*(O) (6) ot

is analytic in ©.
Before continuing, let us introduce the following notation: \_ j

a complex-valued function defined @, an open set ing' Fig. 2. Two open region®; andf2,, are separated by a piecewise regular

. are . . . L 1 ol

is of classC* (©), e (0,1],if f € 02(@)_and30 > _0' surfaceS1. In € the dielectric is linear, homogeneous, and lossles€.n

sup, yeo(lg(@)—g(y)|)/|z—y|* < C, whereg is the function it is linear, lossy, and possibly inhomogeneous.

f itself or any of its first- or second-order partial derivatives

[1?_' P 67‘;]_'L ob ; % and let th which are[C?(B(P, §))]* in an open spherB(P, §) centered

di Iemma ) et_ | _r%absoﬁrce' rel\j open Sel ar‘]n ett ;3 atP € S, of radiusé (6 such thatB(P, ) C ©; U Q5 U
lelectric material | e linear. Moreover, let the comp eXSjk)- It then follows thatE! and satisfy

dielectric permittivity e(r) and magnetic permeability.(r)
be twice continuously differentiable, bounded together with {V x E(r) = —jwp;H(r) (13)

their first- and second-order derivatives, and be such that V x H(r) = jwe;E(r)

Ellk >t 0: le(r)] t'> ]]f ||’é(r) |t'> k, Vr € ©. Any time-harmonic ;. B(P, §), since they satisfy it if2; N B(P, &) by hypothe-
electromagnetic field satisfying sis, andEl = H' = VxE = VxH' = 0in B(P, §)—; as
Ec[C*1(©)] He[C*'(O) (7) @ consequence of (11) and (12), and of the proven regularity
o of E' and H' on Sjs.
can be extended by continuity on any open regular baot However, by virtue of Lemma 2&’ andH’ are analytic in
the boundary o if I' is also a part of the boundary of anB(P, §). AsE' = H = 0in Q,, we obtainE’ = H =0 in
open region®, whereE = H = 0. The extended field is B(P, ¢). Finally, by observing tha®; N B(P, 6) is an open
twice continuously differentiable even dn i.e., set contained inY;, thatE’ = H' = 0 in B(P, §) implies
9 3 o 3 E=H=0IinQ; n B(P, ), and thatE andH are analytic
Ee[C(®urue,)) Hel[C(Ourue.)r. (€ in ©2;, we obtain, by analytic continuatiol; = H = 0 in €;.
This procedure can be applied to every open subreflion

IV."A UNIQUENESS THEOREM i = 1,---,m, sharing parts of its boundary with a region
Now we are ready to prove that the cavity problem (4) doeghereE = H = 0, i.e., we can go across jump discontinuities
not admit resonant modes. of the medium, provided that the field& and H satisfy
Theorem 1: Any solution of the cavity problem (4) suchE = H = 0 in the adjacent region. ThereforE = H = 0
that in €.

1 3 1 3 . Remark 1: Theorem 1 proves that the cavity problem (4)
EelC ()] HelC ()] i=Lesn ) admits only the trivial solutiorE = H = 0 within the class
Ec[C>' Q)] He[C>'Q)]’, i=1,---,m (10) of time-harmonic electromagnetic fields with the assumed
C . regularity; we cannot exclude that less regular solutions could
is trivial, |.e.,_E =H=0in . . exist, but an analysis of this problem would require the use of
_ P_ro_of: First, we obs_erve that (9) and (10) imply that (5}he tools of functional analysis.
is satisfied. Then, by using Lemma 1, we have Remark 2: Theorem 1 could also be proven by using

E=H=0in Q. i=1, -, n. (11) Lemma 1 and repeatedly applying a result proven hijllét

[9, Th. 34, p. 135]. However, this result does not provide the
Moreover, by using Lemma 2, we can conclude that £, regular (2) continuation property proven in Lemma 3.
E., H,, H,, and H. are analytic in€2;, i =1, ---, m. An immediate consequence of Theorem 1 is that boundary-
Now, let1 < j < m, 1 < k < n, and{2; be an open value problem (3) has a unique solution.

region having part of the boundary .. Let S;x be an
open and regular part 6t; N Q4 (see Fig. 2, where we have V. CONCLUSIONS
considered, for examplg,= 1 andk = 1). As a consequence

of (10) and (11), the conclusion of Lemma 3 can be applied A generall_zatlon of the stgndard uniqueness theorem for
and we can define time-harmonic electromagnetic boundary-value problems has

) been presented and proven. The boundary-value problems

E = {E7 in € U Qg considered have been defined by specifying the tangential
0, onSj components of the electric field over the closed boundary

(or the tangential components of the magnetic field over the

) boundary, or the former components over part of the boundary,

H = {Hv in $2; U Qo (12) and the latter components over the rest of the boundary) of a
0, onSj limited region containing a linear dielectric material neither

and
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lossy nor lossless everywhere. In particular, the uniquenessSafbstituting fore(r) and u(r) from (1) and (2), we obtain
the solution has been proven in the case where the dielectric
was linear, piecewise, homogeneous, and lossless everywhere,
except for some linear and lossy subregions that may be
inhomogeneous. From this analysis, one can deduce that
a cavity resonator, loaded with linear and lossy dielectrics
together with linear, piecewise, homogeneous, and lossless
dielectric materials, does not admit undumped resonances.

0= Z/ﬂ_ jwsi[HJ? + joei[EJ? dV
=1

+ ;/Qm- _jw(ﬂgiR(r) _jﬂoii(r))|H|2

+ jw(eqir(r) + jeoir ()| EI* dV (A7)

i.e.
APPENDIX '

of Lemmas 1 and 3 are provided.

In the boundary-value problem and the corresponding eigen-
value problem considered in this paper, we look for solutions
defined in open region§;, i = 1, ---, m, and Q,;, i =
1, .-+, n. For this reason, the boundary conditions must be
considered as conditions on the limits of the fields as they
approach the boundary from the interior of the domain of
definition [10, vol. I, p. 579]. Moreover, we required som&his equation implies that both the real and imaginary parts
regularity of the fields in those regions in order to give af the right-hand-side term are zero. In particular, the real part
meaning to the equations or in order to prove some propertiasist be zero, i.e.,
of the fields themselves. Then, the boundary conditier =
G on S can have a meaning {& is not too irregular [10, p.
578].

Now we can turn our attention to the proofs of the_z Iemma%‘oth terms of the integrand of (A9) are greater than or equal

Proof of Lemma 1:The continuity pf th(_a tangenpal COM-4) zeroVr € Qui, 4 = 1, ---, n. As & consequence, (A9) is
ponents ofE and H across the possible internal 'nterface§atisfied if and only if
implies thatE x H* (* indicates complex conjugate) has a
continuous normal component. MoreovErx H* is continu- {wfmj(r)llﬂl2 =0
ously differentiable in every open subregion, and the boundary | wfiir(r)[H|? =0

of every subregion is piecewise_ regular. Consequent_ly, tlﬁlﬁus, in order to satisfy (A9), we must ha = 0 where
divergence theorem can be applied to the whole dorflaas weqir(r) is strictly positive, andH = 0 wherewyiyiz(r) is
strictly positive.

However, by using Maxwell's equations

In this appendix, some mathematical details and the proofs  _ Z/ —jwpi[HP? + jwe;|E[ dV
=1 €

+ Z —jwheir(r)|H|? + jwe,ir(r)|Ef dV
i=1 Y o

—Z/ i (O)[HP + wesi (D|E2 V. (A8)
i=1 Y Qi

Z/ st (O[HP + weni (DB dV =0.  (A9)
=17 S

VreQ,i=1--,n

VreQ, i=1 - n A0

j[ExH*-ndsz/v-(ExH*)dv. (A1)
S Q

By using the vector identity {V % E(r) = —jwu(r)H(r) (ALL)
V. (AxB)=B-(VxA)—A-(VxB) (A2 ; V x H(r) = jwe(r)E(r)
an
we obtain ) m n
—jwp(r) 0 ‘ ‘
j'{ ExH*-ndS = / H* - (VXE)-E-(VxH*)dV (A3) {jws(r) 40 TrE <i=1 Q) N <L=J1 Q’”) (A12)
S Q

we have thatE = 0 (H = 0) in any subregion ofQ2
impliesH = 0 (E = 0) in the same subregion. Consequently,
E = H = 0 wherewe,;;(r) or wu,;;(r) are strictly positive.
Then, under the hypothesis on the signsuwofe,;;(r) and
toir(r), we obtain

E=H=0in Q.

and, by using Maxwell’'s equations, we have

j{ExH*ﬂndS
S

:/H*~(—jwu(r)H)—E~(—jw5*(r)E*)dV
! i=1,--,n (A13)
(A4)

— [ ()P + joe ()P V.
Q

SincenxE =0overS (ornxH =0overS,ornxE =20
over part ofS andn x H = 0 over the rest of5), we have

ngxH*-ndS:O (A5)
S
and, consequently,
0= [ ~jontn)HP + joe (BFAV.  (A6)
Q

Proof of Lemma 3:First of all, we observe that

E= lim H=0

rc®@—recrl

lim

re@—rer (A14)

as a consequence of the continuity of the tangential compo-
nents ofE andH and of the normal components &fr)E(r)
andu(r)H(r) (as|e(r)| > k and|p(r)| > k Vr € O).

The rest of the proof is divided into three parts. In Part
1, we prove that the tangential derivatives of any component
of E or H tend to zero ax € © — P € I, in Part 2, by
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x This implies

lg(Ps)| < C|Px — Pr|

02 72
< z|* ).
o(| G @0 |+ ). a0
In an analogous way, by considering the pointdoandX
P corresponding ta: = —Z andy = 0 (see Fig. 3), i.e.,
O5 z _ 822 EQ
Pr = <_$7 0, @ (‘/EO*) 7)
and

Ps_ :(_E’ 0, |5|a)

'
>

wherezo_ € (=7, 0), we obtain

lg(Px_)| < C|Pg_ — Pr_|

Fig. 3. The chosen Cartesian coordinates are such that the plané is 924 =2

tangent tol" at P. In particular, it is shown the plang = 0. X is a curve < il —la

contained, at least locally, i®. < C(‘ ox2 (0-) 2 +[7] ) (AL7)
Then,

using the result of Part 1, we prove that any first- or second-

order derivative of any component &f or H tend to zero as 92 72 922 72

r € ® — P e I'. Finally, in Part 3, we conclude the proof0<‘a 5 (20) — 5| T ‘@ (wo-) 5 +2|f|a>

by using the result of Part 2.

Part 1. Let us consider a poinP of I'. As I' is regular,
we can define a reference system with originitnsuch that
(z, y) is the plane tangent to the surfaeat P and z is the
axis orthogonal td" at P. The z-axis is oriented in such a
way that the pointg0, 0, £), £ > 0 are in©. Let us consider
the planey = 0, and in this plane the curvE defined by
z = |z|*, « € (1, 2). As the boundaryl” is C?, there exists
& > 0 such that® is in © for |z| < ¢ (see Fig. 3). <‘ 92 o

Z lg(P)l + lg(Ps-)| = [9(Px) —g(Ps-)|.  (A18)
As Py andPyx_ are in© we have [see (A15)]

l9(Ps) — g(Ps-)| = |f(Ps) — f(Ps-)| (A19)
and, consequently, by also using Lagrange’s theorem,

-mmﬂ

82 > =2
Now, let us consider a complex functigh which could be C il ‘a—; (z0-) %
X

Oz 2( )5 2
any of the components d or H.

Given0 < z < 6, the point onl’ corresponding te: = =, > [f(Ps) — f(Pe_)| = ‘_f 0. 17 . 2l A20
y = 0 is given by Pp = (f 0, (822/(9372)(370)(52/2)), |f( E) f( = )| 835( 1, a| | ) | | ( )
where zg € (0, ) and (9%z/9z? )(a:) is the second-order .
derivative of the curve given by intersecting with the Wherez; € (=%, z), ie.,
plane 4 = 0. Then, the distance between the point bn _ _

; — 0 |=ley af C [(|8%» |z 9%z |z

Pr and the point on Py = (7, 0, [2|*) is smaller than |=ZL (5 o |z%)| < = (z0) = | + (zo_) =
(672/02%)(20)(@/2)| + [7]”. A A L 2

Let us define the functiog as follows: +2|§|a—1> 0. (A21)

) |z]|—0
g:{f, in© (A15)
0, onl Let us now supposeéf/dx does not tend to zero as

re® —-Pel, ie,
which is continuous ir® U I" as a consequence of (Al4).

Itis now easy to see thatdf is such thatup, ,ceo(|f(z)—
f)|/|z — y|) < C then |[Vf(Q)] < C VQ € O. If this
was not the case, by using the continuity of the gradient
and Lagrange’s theorem, we could findy € © such that where B(0, §) denotes the open sphere centered at zero of

af

83:( )| > o (A22)

3eo V83IP; € © N B(0, 6): ‘

|f(z) — f)] > Clz — yl. radius é.
By using again Lagrange’s theorem and applying itgfo  Let us conside{z| = 1/n; then (A23), shown at the bottom
we can conclude of the following page, contradicts the hypothegis C? 1(©).
Then, 8f/0x tends to zero ax € © — P ¢ [\
l9(Ps) — g(Pr)| <C Analogously, we can prove that all tangential derivatives tend

Ps—Pr| ~ to zeroasr € © — P € .
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Part 2: From Part 1, we know thabE,/dz, OE,/dx, left-hand side. Then9?/9z2)H, tends to zero. Analogously,
OE,/dxz, OE. /0y, OF,/0y, OF./dy, OH./0x, OH,/0x, we can prove(§?/9z*)H,.
8H,/8x, OH, /8y, 0H, /0y, H /8y tend to zero as We have already noted th& - (xH) = 0. As both . and
H are at least twice continuously differentiable@n we can

re®—prPel. (A24) " derive it with respect tor
In order to prove that the normal derivatives also tend to zero, 4
let us consider Maxwell's equations and, in particular, 0= P (V- (uH))
) ) a
— H,— — H. =jweE, = H Vu+uV-H
9z T gg e TV gﬁ( Nua) )
agHZ—agHy:jwsEm. (A25) =5-W+H-87(W)+85V-H
v : 90 o0 )
E, and E, tend to zero as a consequence of (Al4). As thg oo He ki o ay Hy + o - He. (A29)

is bounded, the right-hand sides tend to zero. However, from
(A24), we know that(d/dz)H . and(3/0y)H. tend to zero. We have already proven that the first five addends of the right-
Consequently(d/0z)H, and (0/0%)H,, tend to zero. hand-side term tend to zero (also becausand its first- and
By applying the divergence to one of Maxwell's equationsecond-order derivatives are boundedsin
Then, as|u(r)] > k Vr € ©, (0?/92?)H. also tends to

V (VX E(r)) = —jwV - (u(r)H(r)) (A26)  zer0 asr € © — P € I,
we obtain (asE is twice continuously differentiable we have Analogously, we can prove théd? /02) E.., (9% /022 E,,
V - (V x E(r)) = 0) (02/92?)E. tend to zero ay € © — P € I'.
Part 3: Let us consider
0=V -(uH
V- (kH) w_[E neuve, ., [H ineue,
=H-Vp+pv-H 0, onT o0, onl

a a a
=H- —H, —H — H,.. (A27
However,H - Vi, p(8/02)H,, andp(d/dy)H, tend to zero,
asy and its gradient are bounded. Then|as)| > kVr € O,
(8/8z)H, tends to zero.
Analogously,(8/92)E,, (0/9z)E,, and(9/0z)E. tend to

which is continuous ir® U I" U ©,,. Let f be any component
of E’ or H'. By using the fact that the first-order derivatives
of f tend to zero as € © — P €I, we first prove thatf is
differentiable onl" and that its differential is zero o, i.e.,
lime,p(f(r)— f(P)/|r—P|) =0, VP € I or, equivalently,

zeroasr € © —» P €T fx) - f(P)
We now know that all first-order derivatives of any compo? € > 0> 30 > 0: Ir—P| <eVri0<|r-P[ <4,
nent ofE or H tend to zero agz € © — P € I'. VP el'. (A30)

By using the same procedure as indicated in Part 1, we

obtain thatdf /9=, 0f/9y tend to zero, where, in this case|f r ¢ I' U ©,, the inequality clearly holds true. L&(P, 6)
J is any of the first-order derivatives of any componerie the open sphere centeredRate I' of radiusé such that
of E or H. Moreover, by using Schwartz’'s theorem, anyVf|l<evVxecO®nBP, 6 andB(P, §) cOUT UB,. If
of the following derivatives:d’g/(9zdx) = 8°g/(8x9z), re ©n B(P, 6), let us consider the straight lin® (r € TP

9%g/(9z dy) = 9*g/(dy 9z) tend to zero, where, in this caseand P € rP). Only two possible cases are to be considered
g is any component oE or H. It remains to be proven that(see Fig. 4):

9%g/9z* tends to zero, wherg is again any component of P and T' have only P in common. Then, by using

E or H. . L ) Lagrange’s theorem,
By considering, for example, the derivative with respect to
z of (8/0z)H, — (8/0x)H, = jweE,, we obtain Jq: f(r) = f(P)+Vf(q)  (r —P),
o> o> ) g OE, qerP, q# P, q#r (A3l)
@Hw‘mm—“(%az“ a) (A28)

and the conclusion is obvious sinfe f(q)| < e.
The right-hand side tends to zero (also becaused its deriva- ~ « rP andI’ have some other points in common. LB{
tives are bounded i®), as does the second addend of the be the closest of these points to(it exists asrP and

a a
@9~ ar, 0, 1)

(|1
0T 9 |92 O
>

|PE_ (x1, 0, |Z|*)| (_ 1 1)\ 202
54114 (-)
n

_—
SHO, n——4oo +o0 (A23)
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Fig. 4. A neighborhood of a poinP belonging to the common boundary
of two adjacent regions.
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