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Uniqueness of the Solution of Electromagnetic
Boundary-Value Problems in the Presence of

Lossy and Piecewise Homogeneous
Lossless Dielectrics

Salvatore Caorsi and Mirco Raffetto

Abstract—In this paper, the uniqueness of the solution of
electromagnetic boundary-value problems is investigated and, in
some cases, proven. The boundary-value problems considered
are always defined in limited regions containing linear dielectric
materials that are neither lossy nor lossless everywhere. The
boundary conditions are given by specifying over the closed
boundaries either the tangential components of the electric field
or the tangential components of the magnetic field (or possibly by
specifying the tangential components of the electric field over part
of the boundaries and the tangential components of the magnetic
field over the rest of the boundaries). In particular, the solution is
proven to be unique in the case of linear dielectric materials which
are piecewise homogeneous and lossless, except for some linear
and lossy subregions that may be inhomogeneous. As a byproduct
of this analysis, one can conclude that a cavity resonator, loaded
with linear and lossy dielectrics together with linear piecewise
homogeneous and lossless dielectric materials, does not admit
undumped resonances.

Index Terms—Electromagnetic theory.

I. INTRODUCTION

ELECTROMAGNETIC boundary-value problems are
characterized by unique time-harmonic solutions when

the tangential components of the electric field are specified
over the closed boundary of a limited region if the dielectric
material contained in that region is linear and lossy everywhere
[1]. Boundary conditions can also be specified in terms of
the tangential components of the magnetic field over the
boundary or even in terms of the tangential components of
the electric field over part of the boundary and in terms of
the tangential components of the magnetic field over the rest
of the boundary. However, the condition on the dissipative
behavior of the dielectric material cannot be weakened if we
want to retain the validity of the proof given in [1], as this
proof of the uniqueness of the solution is based on the energy
conservation law, i.e., Poynting’s theorem.

On the contrary, if the limited region is characterized by a
dielectric material which is linear and lossless everywhere, it
is well known that the cavity problem, defined by specifying
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homogeneous tangential components of the electric field over
the boundary (or homogeneous tangential components of the
magnetic field over the boundary, or homogeneous tangential
components of the electric field over part of the boundary, and
homogeneous tangential components of the magnetic field over
the rest of the boundary), admits nontrivial modal solutions.
For this reason, the electromagnetic boundary-value problem
with inhomogeneous boundary conditions can admit an infinite
number of solutions, i.e., in general, the solution is not unique.

However, between these two classes of electromagnetic
boundary-value problems, there is a “wide” class of problems
characterized by linear dielectric materials neither lossy nor
lossless everywhere. This is the case, for example, of dielec-
trically loaded cavity resonators or waveguides, when a lossy
linear dielectric fills only part of the investigation domain,
the rest being empty and, consequently, linear and lossless.
Moreover, this kind of problems can be important even though
the modeled physical phenomenon is quite different from a
boundary-value problem. For example, scattering simulators
based on the so-called hybrid techniques [2], [3] often require
the solutions of electromagnetic boundary-value problems,
which are defined on linear, but only partly lossy, dielectrics.
The uniqueness of the solution of the involved boundary-value
problems is of particular importance in order to be sure that
the method is able to solve the scattering problem correctly
[4]–[6].

A first attempt to fill the gap between problems character-
ized by linear and everywhere lossy dielectrics and problems
characterized by linear and everywhere lossless dielectric ma-
terials was made in [7]. In [7], the uniqueness of the solution
was proven by using the hypothesis that the lossless part of
the dielectric was homogeneous. Now, by using a much more
detailed mathematical analysis, we try to generalize that result
by allowing the lossless part of the dielectric to present jump
discontinuities. In particular, we will prove that the tangential
components of the electric field over the boundary (or the
tangential components of the magnetic field over the boundary,
or the former components over part of the boundary, and the
latter components over the rest of the boundary) uniquely
determine the solution of the corresponding boundary-value
problem when the medium within the boundary is linear,
lossless, and piecewise homogeneous, except for some linear
and lossy subregions that may be inhomogeneous.
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Fig. 1. The boundary-value problem considered involves linear, homoge-
neous, and lossless materials in
i; i = 1; � � � ; m, and linear, but lossy and
possibly inhomogeneous dielectrics in
�i; i = 1; � � � ; n.

A byproduct of this analysis is that a cavity resonator, loaded
with linear and lossy dielectrics together with linear piecewise
homogeneous and lossless dielectric materials, does not admit
undumped resonances.

II. THE ELECTROMAGNETIC BOUNDARY-
VALUE PROBLEM CONSIDERED

Fig. 1 shows the typical boundary-value problem considered
in this paper. Let be the region of interest. We suppose that
it is an open, connected, and bounded set in. Moreover,
let , be open regions characterized
by linear, lossless, and homogeneous dielectric materials, and

, be the open regions where the
dielectric materials are linear and lossy. This means that
the dielectric permittivity and magnetic permeability can be
expressed as follows:

(1)

(2)

where , , , , ,
, and or are real scalar fields strictly

positive in , . Finally, let us suppose that the
boundaries of , of , , and of ,

, are piecewise regular surfaces.
The boundary-value problem is mathematically formulated

as follows:

given and find and , defined in every
open region , , and ,
(and regular enough to give a meaning to the following
equations), satisfying

in
or

in
or

on
(3)

such that and are tangentially continuous and
and are normally continuous across

internal interfaces.

In the previous problem, denotes the angular frequency
and is the unit vector normal to (where it has a meaning)
and pointing outward from the region.

It is well known that the electromagnetic boundary-value
problem (3) admits a unique solution if and only if the cor-
responding homogeneous problem does not admit nontrivial
solutions.

For this reason, in the following, our main objective will
be to prove that the associated cavity problem does not admit
resonant modes at . The mathematical formulation of
the associated eigenvalue problem is

find , and nontrivial and , defined in every
open region , , and ,
(and regular enough to give a meaning to the following
equations), satisfying

in
or

in
or

on
(4)

such that and are tangentially continuous and
and are normally continuous across

internal interfaces.

It is important to note that the boundary conditions in (3)
and (4) could also be given in terms of tangential components
of the magnetic field ( specified on ) or in terms
of tangential components of the electric field on part of the
boundary and tangential components of the magnetic field over
the rest of the boundary ( specified on a part and

specified over the rest of ).

III. SOME USEFUL PROPERTIES OF

ELECTROMAGNETIC FIELDS

In this section, we collect some important properties of elec-
tromagnetic fields, which will be used later to prove our main
result on the uniqueness of the solution of the boundary-value
problem considered. In particular, by using standard arguments
[1] and [8] (i.e., the energy conservation law), Lemma 1 proves
that the solutions of the cavity problem (4) are trivial in ,

(i.e., in , ; see also
[7] for an analogous, albeit less general, conclusion), Lemma 2
addresses the question of the analyticity of the electromagnetic
field in , , and Lemma 3 addresses the
problem of the differentiability of the electromagnetic field on
the boundary of an open region when this boundary is shared
with a region characterized by . The proofs of
Lemmas 1 and 3 will be reported in the Appendix. Lemma 2
is proven in [9, p. 134] and [10, pp. 585, 641].

Lemma 1: Any solution , of the cavity problem (4),
such that

or (5)

satisfies in , .
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Lemma 2: In an open region , characterized by constant
and possibly complex dielectric parameters, any twice con-
tinuously differentiable time-harmonic electromagnetic field,
i.e.,

(6)

is analytic in .
Before continuing, let us introduce the following notation:

a complex-valued function defined in, an open set in ,
is of class , , if and :

, where is the function
itself or any of its first- or second-order partial derivatives

[10, p. 674].
Lemma 3: Let be a source-free open set in and let the

dielectric material in be linear. Moreover, let the complex
dielectric permittivity and magnetic permeability
be twice continuously differentiable, bounded together with
their first- and second-order derivatives, and be such that

: , , . Any time-harmonic
electromagnetic field satisfying

(7)

can be extended by continuity on any open regular partof
the boundary of if is also a part of the boundary of an
open region where . The extended field is
twice continuously differentiable even on, i.e.,

(8)

IV. A U NIQUENESS THEOREM

Now we are ready to prove that the cavity problem (4) does
not admit resonant modes.

Theorem 1: Any solution of the cavity problem (4) such
that

(9)

(10)

is trivial, i.e., in .
Proof: First, we observe that (9) and (10) imply that (5)

is satisfied. Then, by using Lemma 1, we have

in (11)

Moreover, by using Lemma 2, we can conclude that, ,
, , , and are analytic in , .
Now, let , , and be an open

region having part of the boundary in . Let be an
open and regular part of (see Fig. 2, where we have
considered, for example, and ). As a consequence
of (10) and (11), the conclusion of Lemma 3 can be applied,
and we can define

in
on

and

in
on (12)

Fig. 2. Two open regions
1 and
�1 are separated by a piecewise regular
surfaceS11. In 
1 the dielectric is linear, homogeneous, and lossless. In
�1

it is linear, lossy, and possibly inhomogeneous.

which are in an open sphere centered
at of radius ( such that

). It then follows that and satisfy

(13)

in , since they satisfy it in by hypothe-
sis, and in as
a consequence of (11) and (12), and of the proven regularity
of and on .

However, by virtue of Lemma 2, and are analytic in
. As in , we obtain in
. Finally, by observing that is an open

set contained in , that in implies
in , and that and are analytic

in , we obtain, by analytic continuation, in .
This procedure can be applied to every open subregion,

, sharing parts of its boundary with a region
where , i.e., we can go across jump discontinuities
of the medium, provided that the fields and satisfy

in the adjacent region. Therefore,
in .

Remark 1: Theorem 1 proves that the cavity problem (4)
admits only the trivial solution within the class
of time-harmonic electromagnetic fields with the assumed
regularity; we cannot exclude that less regular solutions could
exist, but an analysis of this problem would require the use of
the tools of functional analysis.

Remark 2: Theorem 1 could also be proven by using
Lemma 1 and repeatedly applying a result proven by Müller
[9, Th. 34, p. 135]. However, this result does not provide the
regular ( ) continuation property proven in Lemma 3.

An immediate consequence of Theorem 1 is that boundary-
value problem (3) has a unique solution.

V. CONCLUSIONS

A generalization of the standard uniqueness theorem for
time-harmonic electromagnetic boundary-value problems has
been presented and proven. The boundary-value problems
considered have been defined by specifying the tangential
components of the electric field over the closed boundary
(or the tangential components of the magnetic field over the
boundary, or the former components over part of the boundary,
and the latter components over the rest of the boundary) of a
limited region containing a linear dielectric material neither
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lossy nor lossless everywhere. In particular, the uniqueness of
the solution has been proven in the case where the dielectric
was linear, piecewise, homogeneous, and lossless everywhere,
except for some linear and lossy subregions that may be
inhomogeneous. From this analysis, one can deduce that
a cavity resonator, loaded with linear and lossy dielectrics
together with linear, piecewise, homogeneous, and lossless
dielectric materials, does not admit undumped resonances.

APPENDIX

In this appendix, some mathematical details and the proofs
of Lemmas 1 and 3 are provided.

In the boundary-value problem and the corresponding eigen-
value problem considered in this paper, we look for solutions
defined in open regions , , and ,

. For this reason, the boundary conditions must be
considered as conditions on the limits of the fields as they
approach the boundary from the interior of the domain of
definition [10, vol. I, p. 579]. Moreover, we required some
regularity of the fields in those regions in order to give a
meaning to the equations or in order to prove some properties
of the fields themselves. Then, the boundary condition

on can have a meaning if is not too irregular [10, p.
578].

Now we can turn our attention to the proofs of the lemmas.
Proof of Lemma 1:The continuity of the tangential com-

ponents of and across the possible internal interfaces
implies that ( indicates complex conjugate) has a
continuous normal component. Moreover, is continu-
ously differentiable in every open subregion, and the boundary
of every subregion is piecewise regular. Consequently, the
divergence theorem can be applied to the whole domainas

(A1)

By using the vector identity

(A2)

we obtain

(A3)

and, by using Maxwell’s equations, we have

(A4)

Since over (or over , or
over part of and over the rest of ), we have

(A5)

and, consequently,

(A6)

Substituting for and from (1) and (2), we obtain

(A7)

i.e.,

(A8)

This equation implies that both the real and imaginary parts
of the right-hand-side term are zero. In particular, the real part
must be zero, i.e.,

(A9)

Both terms of the integrand of (A9) are greater than or equal
to zero , . As a consequence, (A9) is
satisfied if and only if

(A10)

Thus, in order to satisfy (A9), we must have where
is strictly positive, and where is

strictly positive.
However, by using Maxwell’s equations

(A11)

and

(A12)

we have that ( ) in any subregion of
implies ( ) in the same subregion. Consequently,

where or are strictly positive.
Then, under the hypothesis on the signs of, and

, we obtain

in (A13)

Proof of Lemma 3:First of all, we observe that

(A14)

as a consequence of the continuity of the tangential compo-
nents of and and of the normal components of
and (as and ).

The rest of the proof is divided into three parts. In Part
1, we prove that the tangential derivatives of any component
of or tend to zero as , in Part 2, by
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Fig. 3. The chosen Cartesian coordinates are such that the planez = 0 is
tangent to� at P . In particular, it is shown the planey = 0. � is a curve
contained, at least locally, in�.

using the result of Part 1, we prove that any first- or second-
order derivative of any component of or tend to zero as

. Finally, in Part 3, we conclude the proof
by using the result of Part 2.

Part 1: Let us consider a point of . As is regular,
we can define a reference system with origin insuch that

is the plane tangent to the surfaceat and is the
axis orthogonal to at . The -axis is oriented in such a
way that the points , are in . Let us consider
the plane , and in this plane the curve defined by

, . As the boundary is , there exists
such that is in for (see Fig. 3).

Now, let us consider a complex function, which could be
any of the components of or .

Given , the point on corresponding to ,
is given by ,

where and is the second-order
derivative of the curve given by intersecting with the
plane . Then, the distance between the point on

and the point on is smaller than
.

Let us define the function as follows:

in
on

(A15)

which is continuous in as a consequence of (A14).
It is now easy to see that if is such that

then . If this
was not the case, by using the continuity of the gradient
and Lagrange’s theorem, we could find such that

.
By using again Lagrange’s theorem and applying it to,

we can conclude

This implies

(A16)

In an analogous way, by considering the points onand
corresponding to and (see Fig. 3), i.e.,

and

where , we obtain

(A17)

Then,

(A18)

As and are in we have [see (A15)]

(A19)

and, consequently, by also using Lagrange’s theorem,

(A20)

where , i.e.,

(A21)

Let us now suppose does not tend to zero as
, i.e.,

(A22)

where denotes the open sphere centered at zero of
radius .

Let us consider ; then (A23), shown at the bottom
of the following page, contradicts the hypothesis .

Then, tends to zero as .
Analogously, we can prove that all tangential derivatives tend
to zero as .
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Part 2: From Part 1, we know that , ,
, , , , , ,
, , , tend to zero as

(A24)

In order to prove that the normal derivatives also tend to zero,
let us consider Maxwell’s equations and, in particular,

(A25)

and tend to zero as a consequence of (A14). As
is bounded, the right-hand sides tend to zero. However, from
(A24), we know that and tend to zero.
Consequently, and tend to zero.

By applying the divergence to one of Maxwell’s equations

(A26)

we obtain (as is twice continuously differentiable we have
)

(A27)

However, , , and tend to zero,
as and its gradient are bounded. Then, as ,

tends to zero.
Analogously, , , and tend to

zero as .
We now know that all first-order derivatives of any compo-

nent of or tend to zero as .
By using the same procedure as indicated in Part 1, we

obtain that , tend to zero, where, in this case,
is any of the first-order derivatives of any component

of or . Moreover, by using Schwartz’s theorem, any
of the following derivatives: ,

tend to zero, where, in this case,
is any component of or . It remains to be proven that

tends to zero, where is again any component of
or .
By considering, for example, the derivative with respect to
of , we obtain

(A28)

The right-hand side tends to zero (also becauseand its deriva-
tives are bounded in ), as does the second addend of the

left-hand side. Then, tends to zero. Analogously,
we can prove .

We have already noted that . As both and
are at least twice continuously differentiable in, we can

derive it with respect to

(A29)

We have already proven that the first five addends of the right-
hand-side term tend to zero (also becauseand its first- and
second-order derivatives are bounded in).

Then, as , also tends to
zero as .

Analogously, we can prove that , ,
tend to zero as .

Part 3: Let us consider

in
on

in
on

which is continuous in . Let be any component
of or . By using the fact that the first-order derivatives
of tend to zero as , we first prove that is
differentiable on and that its differential is zero on, i.e.,

, or, equivalently,

(A30)

If , the inequality clearly holds true. Let
be the open sphere centered at of radius such that

and . If
, let us consider the straight line (

and ). Only two possible cases are to be considered
(see Fig. 4):

• and have only in common. Then, by using
Lagrange’s theorem,

(A31)

and the conclusion is obvious since .
• and have some other points in common. Let

be the closest of these points to(it exists as and

(A23)
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Fig. 4. A neighborhood of a pointP belonging to the common boundary
of two adjacent regions.

the part of in a sufficiently small closed ball are closed
sets). Then, by using Lagrange’s theorem

(A32)

Then, observing that and that
, the conclusion is once again obvious

(as ).

Now, by considering as any derivative of any component
of or , we can again use the same procedure to prove that
it is differentiable on and that its differential is zero on.
Then, , .
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